Skocz do zawartości

Beier

Members
  • Postów

    64
  • Dołączył

  • Ostatnia wizyta

Aktywność reputacji

  1. Dzięki!
    Beier przyznał(a) reputację dla DanielN w Próba jodowa. Jak to działa? robić czy nie robić?   
    Próba jodowa
    Jak to działa? robić czy nie robić?
    Zanim zacznę, przedstawię kilku forumowiczów którzy dbają o poziom tego co czytacie. Kantor, ogromne dzięki, że zechciałeś kolejny raz zrecenzować artykuł i jak zawsze podnieść jakość merytoryczną. Dobrze mieć człowieka związanego z chemią w szeregu piwowarów. Kolejny raz dzięki Oskaliber i Undeath za krytyczne oko praktyka. Nie mogę też zapomnieć o podziękowaniach dla żony, która już chyba ma trochę dość czytania o piwie, to dzięki jej poprawkom stylistycznym można to w ogóle czytać.
     
    W Internecie jest wiele źródeł o tym, jak przeprowadzić test na obecność skrobi za pomocą jodyny. Jeżeli badana próbka zmieniła kolor, to znaczy, że skrobia jest obecna i trzeba dalej zacierać. Współczesne słody, zwłaszcza te mocno rozluźnione, potrafią już po 10-15 minutach pokazać negatywną próbę jodową. Nie ma skrobii, to po co zacieramy tak długo? Czy nie pora wysładzać? Na te pytania postaram się odpowiedzieć.
     
    Opiszę Ci jak działa próba jodowa i mam nadzieję, że przekonasz się, że warto poczekać dłużej z zacieraniem. W tym celu trzeba przypomnieć co to jest skrobia w rozumieniu piwowara domowego.
     
    Skrobia jest polimerem, w zasadzie biopolimerem, a jeszcze dokładniej polisacharydem. Przedrostek ‘poli’ oznacza, że związek składa się z wielokrotnie powtórzonych jednostek zwanych merami. Stąd polimer. W skrobi merem jest cząsteczka glukozy. Zatem skrobia to wielocząsteczkowy związek, który składa się z powtarzających się cząsteczek glukozy. Ale żeby było ciekawiej, to w skrobi występują dwie frakcje:
    Amyloza, są to długie nitki glukozy. W skrobi pochodzącej ze słodów mogą liczyć liczyć nawet 2000 cząsteczek glukozy w jednym rzędzie. Cząsteczki glukozy połączone są jedna za drugą, budując długą wstążkę. Co ciekawe, odpowiednio długa wstążka zaczyna się skręcać w spiralę. Ta właściwość, jak się zaraz okaże, jest kluczowa do przeprowadzenia próby jodowej. Na pełny obrót spirali przypada 6 cząsteczek glukozy. W zależności od źródła skrobi, amyloza stanowi około 10-30% jej masy. W przypadku słodu jęczmiennego około 20%. Wygląda to tak jak na poniższym obrazku. Te sześciany wewnątrz to cząsteczki glukozy połączone atomem tlenu.

      Amylepektyna, jest o wiele bardziej złożona. Składa się z ogromnej ilości cząsteczek glukozy, dochodzącej nawet do 200 tysięcy. Amylopektyna jest rozgałęzionym tworem. W skrobi pochodzącej z jęczmienia, co 20-30 wiązanie, odchodzi kolejna nitka. Amylopektyny to około 70-90% masy skrobi. W przypadku słodu jęczmiennego to około 80%. Tak wygląda wycinek z takiej potężnej sieci amylopektyny:

    Wygląda to tak, że raz na jakiś czas dołącza się jedna nitka amylozy. I tak dalej i tak dalej. Jak pójdziemy po jednej z nitek, aż do samego końca, to widok się trochę zmieni. Będzie wyglądał tak:

    Końcówki zaczną się skręcać. Czasem w podwójną spiralę, a czasem pojedynczą. Zjawisko skręcania występuje wtedy jeśli nitka jest odpowiednio długa. Skręcenia są dość rzadkie w przypadku wewnętrznej części amylopektyny.

     
    Zarówno amyloza jak i amylopektyny przeplatają się ze sobą formując coś w rodzaju kłaczków.
     
    Poniżej przyda się wiedza na temat działania enzymów scukrzających. W razie problemów zapoznaj się z tym artykułem. Wiele Ci wyjaśni.
     
    Jodyna jest łatwo dostępna w aptece. Możesz ją kupić jako środek do odkażania ran lub płyn Lugola. Oba środki nadadzą się do celów piwowarstwa. Jodyna do odkażania jest dość ciemna, więc jeżeli masz wybór lepiej kupić płyn Lugola. Będzie lepiej widać, zwłaszcza w przypadku ciemniejszych piw.
    Jod nie jest rozpuszczalny w wodzie, aby go rozpuścić używa się jodku potasu. Jod reaguje z anionem jodkowym, tworząc anion trójjodkowy, który jest rozpuszczalny w wodzie. Ważne: jodynę należy przechowywać w ciemnym miejscu.
     
    Jod ma taką właściwość, że jak trafi na skręconą amylozę lub skręconą końcówkę amylopektyny, to potrafi wniknąć do środka i ułożyć się w rządku. Zgodnie z [1] może tak połączyć się do 7 cząsteczek, ale najczęściej jest to mniejsza liczba. Potem następuje przerwa i kolejne cząsteczki jodu.

     
    Jeżeli na taką strukturę padnie światło, czyli będą bombardować je fotony, to okazuje się, że barwa zmienia się na ciemno niebieską a nawet granatową. Im więcej jodu wniknie do skręconej amylozy, tym kolor staje się ciemniejszy. Dzieje się tak na skutek pochłaniania fotonów (światła) przez taki kompleks.
     
    Połączenia mostkowe w amylopektynie, są rzadko skręcone. W takiej strukturze, jodu będzie o wiele mniej. Dlatego amylopektyna barwi się jaśniej, kolor jest raczej wpadający w czerwień.
     
    Dodam jeszcze kolejny składnik, czyli enzymy. Załóżmy, że robisz przerwę w temperaturze około 61°C, jest to również dolna granica kleikowania słodu jęczmiennego. Enzym Alfa-amylazy, jeżeli działa, to bardzo słabo. Za to Beta-amylaza ma się świetnie. Rozłoży sporą część amylozy i zewnętrzne części amylopektyny. Dalej Beta-amylaza zatrzyma się, bo nie umie poradzić sobie z rozgałęzieniami. Czyli zostaje dużo skrobi, nie ma skręconych amylaz, jod nie ma gdzie się schować. Przy użyciu płynu Lugola zapewne zauważysz, że jeszcze do końca się nie zatarło. Ale w przypadku jodyny do odkażania, która jest ciemna, możesz się pomylić.
     
    Jest jasną sprawą, że nikt tak nie zaciera. Temperatura przerw scukrzających jest wyższa, by trafiać w optimum. Wtedy najczęściej działają zarówno Alfa jak i Beta-amylaza. Skrobia się rozkłada. Próba jodowa wyszła negatywna. Ale czy enzymy skończyły już pracę? Już pewnie się domyślasz, że nie.
     
    Jeżeli będziemy mieli dużo krótkich łańcuchów cukru, albo dekstryn z rozgałęzieniami, które mają tylko kilka cząsteczek glukozy, to jodyna nie będzie w stanie się tam utrzymać. Również im krótsze rzędy ułożonej jodyny w spirali amylozy, tym kolor jest jaśniejszy. W cukrach o długości 5-6 cząsteczek, jodyna nie jest w stanie się utrzymać. Próba jodowa wychodzi negatywna a nadal jest dużo krótkich łańcuchów cukrów, na których enzymy będą jeszcze długo działały. Jeżeli przerwiesz zacieranie zaraz po próbie jodowej, to skończysz ze słabo fermentujacą brzeczką, bo drożdże nie są w stanie strawić tak długich łańcuchów cukrów jakie pozostały. Za to bakterie owszem tak. Ryzyko infekcji wówczas wzrasta.
     
    Dodam kolejny puzel. Enzymy oraz skleikowana skrobia w trakcie zacierania są wypłukiwane i rozpuszczane w wodzie. Tak powstaje zupa, która będzie brzeczką. Tam zachodzi ogrom pracy enzymów. Alfa-amylaza tnie losowo długie odcinki amylopektyny i amylozy. Beta-amylaza odcina maltozę. Ilość enzymów jest stała i jest ich tyle ile było w słodzie. Część jest niszczona, denaturuje, np.: jak ucieknie Ci temperatura, albo dostaną za dużo ciepła od palnika czy grzałki. Możesz założyć, że ich ilość bardzo powoli spada w czasie zacierania. Za to ilość pracy wzrasta. Pokażę to na przykładzie. Długi polimer amylozy ma 2 tysiące cząsteczek, jest to linia ‘0’

     
    Jedną amylozę może atakować na raz wiele enzymów Alfa-amylazy, ale tylko jeden enzym Beta-Amylazy. Załóżmy że linia 1 była rozcięta tylko przez jeden enzym, gdzieś około połowy. Tak powstały dwa nowe łańcuchy. Jest teraz praca dla dwóch kolejnych enzymów Beta-amylazy. W kolejnym kroku enzymy alfa-amylazy ponownie rozcieły poprzednio powstałe łańcuchy. Co powoduje, że kolejne 4 wolne enzymy Beta-amylazy mogą zacząć rozkładać długi polimer na maltozę. I tak dalej i tak dalej, ilość krótkich amylaz do pewnego czasu wzrasta wykładniczo, potem proces zwalnia, z powodu kończącej się skrobi. Alfa-amylaza jest bardzo wydajna, Beta-amylaza dostaje potężne ilości krótkich łańcuchów, z których powstanie maltoza. Owszem enzymów są duże ilości, ale po pewnym czasie o wiele więcej będzie krótkich polimerów, na których można pracować, a nie ma jeszcze kim, trzeba cierpliwie czekać. Enzymy są niesamowicie szybkie, ale jest taka ilość pracy, że mimo dużej prędkości, potrzeba im czasu by całkowicie scukrzyć zacier. Pamiętaj też, że enzymy nie mają nóg. W tym małym świecie liczą się siły przyciągania i prawdopodobieństwo i Pan Boltzmann. Nawet jak enzym jest wolny, to musi trafić na polimer i to z odpowiedniego końca w przypadku Beta-amylazy. Jako piwowar, możesz pomóc enzymom. Raz na jakiś czas powoli mieszając zacier. Możesz też zamontować mieszadło i zacierać na wolnych obrotach przez cały czas. Proces zajdzie trochę szybciej.
     
    Pomimo tego, że próba jodowa, po tych 15 minutach już jest negatywna, to nadal w zacierze są potężne ilości krótkich cukrów, które jeszcze powinny być przerobione przez enzymy. To dlatego warto poczekać jeszcze godzinę, jest to dobra wypadkowa.
     
    Proszę zerknij w wolnej chwili do artykułu ‘Beer-busters! Zacieranie z dwoma przerwami – czy i kiedy warto?’. Jest to opis eksperymentu, który przeprowadzał Undeath wraz z kolegami. Zwróć uwagę o ile jeszcze wzrósł ekstrakt, po stwierdzeniu negatywnej próby jodowej. Wynik eksperymentu pokazuje, że warto czekać.
     
    W przypadku mocnych piw, gdzie proporcja zasypu słodu do wody wynosi około 1:2 amylazom jest trochę trudniej. W powstającej brzeczce robi szybko się tłoczno i rozpuszczalność spada. Do tego ciecz jest gęsta. Gęsty zacier powoduje mniejsze ruchy wewnątrz i enzymy trudniej trafiają na polimery glukozy, rozkład jest wolniejszy. Dlatego czas zacierania “mocarzy” często się wydłuża. Kilka godzin nikogo nie powinno dziwić.
     
    Czy warto robić próbę jodową? Wg mnie próba jodowa jest warta przeprowadzenia przynajmniej w dwóch przypadkach.
    Pierwszy przypadek, gdy dopiero zaczynasz przygodę. Warto ją robić w celach edukacyjnych. Co 5 minut przez pierwsze 20 minut zacierania, najlepiej na różnych stylach. Potem już co 10 minut do końca czasu zacierania. Pamiętaj tylko, aby odbierać rzadki płyn, bez drobin słodu. Najłatwiej zrobić to sitkiem kuchennym i złapać kilkanaście kropli do łyżki i przelać na biały talerzyk. Obserwacja pokaże Ci jak szybko działają enzymy. Również pozwoli złapać Ci przypadek, że totalnie coś idzie nie tak i test jodowy ciągle wychodzi pozytywny. Wtedy sprawdź czy nie uciekła Ci temperatura, czy twój termometr jest sprawny, może zalało Ci sondę. Prawidłowo zacierane piwo z dobrze dobranym zasypem koniec końców musi wykazać negatywną próbę. Drugi przypadek, to użycie dużych ilości składnika niesłodowanego. Składniki niesłodowane najczęściej nie mają enzymów scukrzających. W takim przypadku na początku upewnij się, że masz minimalną siłę diastatyczną, przynajmniej 30 Linterów, chociaż lepiej około 50. W tym celu warto wybrać słody silnie diastatycznie, jak: jasny pilzneński, jasny pszeniczny, w skrajnych przypadkach można sięgnąć po jasne słody z jęczmienia sześciorzędowego czy nawet słód diastatyczny. Takie dodatki niesłodowane jak: dynia, gryka, pszenica, żyto, mają dużo beta-glukanów. Zacier staje się bardzo gęsty, nawet lekko kisielowaty. Enzymy mają bardzo trudne środowisko pracy. Mimo dobrej siły diastatycznej, będą dłużej działały. Dlatego próba jodowa jest jak najbardziej na miejscu. Będziesz wiedział, jak długo jeszcze poczekać. Sam stosuję zasadę, że minimalny czas zacierania jest trzy razy dłuższy od czasu wykazania negatywnej próby, ale nie krócej jak godzina. Czasem witbier zacierał mi się ponad dwie godziny.  
    Ponownie się trochę rozpisałem, także nie przynudzam już dłużej. Z tak prostej rzeczy jak próba jodowa wyszło małe wypracowanie. Jednakże przemyciłem kilka informacji co dzieje się w zacierze i jak to gra z próbą jodową. Teraz wiesz, że warto poczekać. Może przeczytasz podlinkowany w treści artykuł o sile diastatycznej i skusisz się na witbiera z 70% zasypem pszenicy niesłodowanej. Nie zapomnij tylko jej skleikować. Dziękuję!

     
    Głównym źródłem, z którego korzystałem, to dokument: [1] The Structure of the Blue StarchIodine Complex. Zerkałem również do Malt : A Practical Guide from Field to Brewhouse oraz Principles of Brewing Science : A Study of Serious Brewing.
  2. Dzięki!
    Beier otrzymał(a) reputację od Jancewicz w Sklep twojbrowar.pl   
    Nie chciałem już ciągnąć tematu Ekuanot z TB tutaj na forum, ale jakoś nie mogę przejść bez słowa po tym co zobaczyłem. Ale od początku. Rozmawiałem z TB nt. kiepskiej jakości chmielu Ekuanot. Rozmówca wydawał się zaskoczony tym co mówię. Odsyłałem go tutaj na forum, aby potwierdzić, że moja opinia nie jest odosobniona. Otrzymałem propozycję, że przyślą mi 100g tego samego Ekuanot za darmo tylko żeby poznać moją opinię co do zapachu. Paczka przyszła dosyć szybko - niestety po otwarciu nadal było czuć lekką skarpetę. Zadzwoniłem do TB i poinformowałem o tym, że chmiel nie pachnie za najlepiej. Rozmówca próbował bronić produktu który sprzedaje, że to prosto od dystrybutora Yakima Valley w Polsce, i że to niemożliwe żeby sprzedali tak kiepski chmiel. Po moim stanowczym oporze i powtórzeniu opinii nt jakości tego chmielu stwierdził, że zgłosi reklamację do tegoż dystrybutora na podstawie m.in. mojej negatywnej opinii jako klienta. Nie jest to kwestia jakiegoś uprzedzenia bo tak jak nadmieniłem kilka postów wcześniej, Ekuanot od innego dostawcy pachniał świeżo, bardzo aromatyczny - nie dał też piołunu w piwie. Wcześniejsze 3 warki z udziałem tego piwa poszły w kanał. Cały pozostały zapas Ekuanot z TB również. Łącznie jestem jakieś 300zł w plecy. Teraz widzę, że ten chmiel jest nadal dostępny tyle, że przeceniony zamiast zostać wycofany. Doświadczony piwowar o ile skusi się na zakup to po prostu straci pieniądze i zastanowi się na kolejnymi zakupami w tym sklepie. Zastanawiam się tylko jak ktoś początkujący się nadzieje - można się wtedy trochę zniechęcić bo oczywiście cała wina pójdzie na brak doświadczenia. Można wysnuć wniosek, że pieniążek dla TB ważniejszy aniżeli zadowolenie klientów i dbałość o to aby sprzedawane produkty były bez zarzutu. Nie można już tłumaczyć się niewiedzą. Przykre...
  3. Dzięki!
    Beier przyznał(a) reputację dla DanielN w Bąbelki w piwie, rzecz o nagazowaniu   
    Bąbelki w piwie, rzecz o nagazowaniu
     

     
    Z tematem nagazowania piwa spotkałem się kompletując swój pierwszy zestaw do wyszynku piwa z kega. Wydawało się to proste. Skręcić, sprawdzić wycieki, pociągnąć za dźwignię kranu i zacznie pięknie lecieć. Cóż, lecieć leciało, ale nie do końca tak jak chciałem. Dalsza część tej historii, która powinna być jej początkiem, zaczyna się tak. Wziąłem drugi prysznic, tym razem medium myjącym była woda a nie piwo. Jak tylko się przebrałem, to zacząłem czytać o co chodzi z tym nagazowaniem.
     
    Artykuł pisałem w oparciu o dwie pozycje:
    Principles of Brewing Science : A Study of Serious Brewing [1], stąd pochodzą informacje związane z kegowaniem i wysyceniem z butli CO2 Podstawy fizyki tom 2, cała teoria dotycząca gazów  
    W poniższym artykule postaram się pokazać, że wysycenie piwa nie jest jakimś magicznym procesem. Podlega prawom fizyki napędzanym przez chemię. Zrozumiesz jak działają kalkulatory, dlaczego trzeba podawać temperaturę piwa w trakcie wyliczeń surowca do refermentacji. Czym jest jednostka wysycenia używana w piwowarstwie. Jakie ciśnienie ustawić na reduktorze i dlaczego tak ważna jest temperatura. W końcu powiem jak nalać piwo z kranu, aby napełnianie kolejnej szklanki było tak samo przyjemne jak jej opróżnianie.
     
    W piwowarstwie najczęściej używanym gazem do wysycenia jest dwutlenek węgla (CO2). Dwutlenek węgla w bardzo dużych ilościach wytwarzany jest podczas fermentacji. Duże browary inwestują w specjalny sprzęt, aby go odzyskiwać. Dzięki temu są w stanie obniżyć koszty sztucznego wysycenia kegów, przepychać piwo oraz zapewniać mu warunki osłonowe, by nie miało styczności z powietrzem.
    Jako piwowarzy domowi wykorzystujemy fermentację wtórną, aby wytworzyć dwutlenek węgla w butelce. Dodajemy trochę cukru przed nałożeniem kapsla . Podczas fermentacji w zamkniętej butelce, produkowany dwutlenek węgla powoli nasyca piwo bąbelkami. Ważna jest ilość cukru, piwo musi być takie jak lubisz.
     
    Zanim opowiem o tym co się dzieje w butelce, trzeba powiedzieć czym jest gaz i jakie ma właściwości. Gaz, jest to stan skupienia materii, w którym ciało fizyczne łatwo zmienia kształt i wypełnia dostępną przestrzeń. Cząsteczki gazu mają pełną swobodę ruchu. Poruszają się w sposób chaotyczny, często zderzając się ze sobą. W przypadku, gdy gaz zostanie zamknięty w pojemniku, to cząsteczki również zderzają się ze ściankami pojemnika. Suma sił wszystkich zderzeń to wywierane ciśnienie. Cząsteczki gazu poruszają się tym szybciej im większa jest temperatura. Zwalniają wraz ze spadkiem temperatury. Przyjrzyj się rysunkowi.
     

     
    Wektory pokazują ruch cząsteczek. Im dłuższy wektor tym cząsteczka gazu ma większą energię. Natrafiając na ściankę nie jest w stanie się przebić i odbija się. Można założyć, że butelka, czy też keg piwa nie zmienia swojej objętości. W takim przypadku ciśnienie można zwiększyć na dwa sposoby:
    podnosząc temperaturę, cząsteczka porusza się szybciej, tym samym siła uderzenia w ściankę naczynia jest większa wprowadzając więcej cząsteczek gazu w tej samej objętości, co doprowadzi do większej ilości kolizji  
    Pojawiły się dwie zmienne. Temperatura oraz ilość gazu. O temperaturze mamy pojęcie, odczytamy ją z termometru. Temperatura określa wypadkową energię cząsteczek. Problem jest z ilością cząsteczek gazu, ponieważ są to ogromne liczby. W tym przypadku mądre głowy wprowadziły odpowiednio dużą jednostkę zwaną molem.
     
    Mol jest to nic innego jak jednostka liczności cząsteczek używana w naukach chemicznych i fizycznych. Jeden mol jest to ogromna liczba, która wynosi 6,022140857×1023 sztuk czegoś. Dokładnie tyle co Stała Avogadra, nie jest to przypadek. Jeżeli weźmiesz jeden mol cząsteczek dwutlenku węgla, to będą miały wagę 44 gramów. Jest to suma mas 6,022140857×1023 pojedynczych cząsteczek CO2. Bardziej szczegółowo o molach opowiadałem w opracowaniu o wodzie w browarze domowym.
     
    Z gazem wiąże się jeszcze jedna właściwość - rozpuszczalność w cieczy. Rozpuszczalność gazu zależy od temperatury oraz ciśnienia. Jeżeli temperatura rośnie, rozpuszczalność gazów maleje. W przypadku gdy ciśnienie rośnie, rozpuszczalność gazów również wzrasta. Zależność tą odkrył i opisał William Henry. Mówię tu o prawie Henry’ego, które opisuje zależność rozpuszczalności gazu w cieczy od ciśnienia.
    p = nKH
    gdzie:
    p - ciśnienie cząstkowe (parcjalne). W przykładach pominę inne gazy, w tym powietrze które w domowych warunkach jest wszechobecne. Będzie zakładał ciśnienie wywierane przez dwutlenek węgla. n - ilość moli gazu rozpuszczona w rozpuszczalniku, którym jest piwo. KH - to stała Henry’ego, która czasem w literaturze nazywana jest współczynnikiem Henry’ego, bo łączy w sobie zależność pary gaz-ciecz oraz temperaturę w jakim proces zachodzi. Trzeba jej szukać w tabelach. W temperaturze 25°C i ciśnieniu atmosferycznym 1 atm wynosi ona około 29.41 [L*atm/mol]. Ta stała jest prawdziwa tylko w tym ciśnieniu i tej temperaturze. Zmiana któregokolwiek z parametrów zmienia jej wartość.
     
    Wysycenie poprzez refermentację
     
    Refermentacja to tylko nazwa jednego z procesów w produkcji piwa. Reakcja, która zachodzi, to nic innego jak fermentacja. Opisuje ją poniższa formuła.
     
    C6H12O6(glukoza) → 2C2H5OH (etanol) + 2CO2 (dwutlenek węgla)
     
    Cząsteczka glukozy jest zamieniana przez drożdże na dwie cząsteczki etanolu i tyle samo dwutlenku węgla. W przypadku nagazowania, chcę wiedzieć ile waży dwutlenek węgla. Tabele podają, że masa molowa etanolu wynosi 46 g/mol, natomiast masa molowa dwutlenku węgla to 44 g/mol. Masy są zbliżone do siebie, do tego stopnia, że książki piwowarskie często podają, że w wyniku fermentacji powstaje tyle samo etanolu co dwutlenku węgla.
     
    Fermentor stanowi dobrą barierę dla otaczającego go powietrza. W wyniku fermentacji, młode piwo nasyca się się dwutlenkiem węgla. Nadmiar uciekł przez rurkę fermentacyjną. Po skończonej fermentacji, w piwie jest już dość sporo rozpuszczonego CO2. Dodanie cukru na refermentację podniesie jego ilość. Pytanie o ile?
     
    By na to odpowiedzieć, muszę najpierw wyliczyć ile dwutlenku węgla mam rozpuszczone w młodym piwie. W tym pomoże prawo Henry’ego. Na koniec fermentacji, kiedy dwutlenek węgla nie jest już wytwarzany, to ciśnienie w fermentorze wyrówna się z atmosferycznym. W realnym świecie dochodzi jeszcze zjawisko dyfuzji i strat CO2 przy napełnianiu butelek. Pominę je w przykładach, by nie wprowadzać zbytniej komplikacji.
     
    Najprościej będzie wytłumaczyć na przykładzie. Piwo w stylu belgijskim zakończyło fermentację w 25°C, taka temperatura utrzymywała się kilka dni. W pokoju barometr pokazywał 1 atm. Stała Henry’ego dla tych warunków wynosi KH = 29,41[L*atm/mol]. Przekształcam wzór i liczę.
    Ilość CO2 w molach wynosi n = p / KH, zatem n = 1 / 29.41 = 0,034 [mol/L]. W jednej butelce półlitrowej będzie połowa tej wartości czyli 0,017 mola gazu.
     
    Teraz chcę wiedzieć, ile dwutlenku węgla zostało wytworzone podczas refermentacji. Dodałem do butelki 1,8 grama glukozy, zatem fermentacja wytworzyła około 0,9 grama CO2 i drugie tyle etanolu. Zerkam na tabelę opisującą dwutlenek węgla i już wiem, że jego masa molowa wynosi 44 g/mol. Zatem 0,9 [g] / 44 [g/mol] ~= 0,02 [mol].
     
    Łącznie mam 0,017 + 0,02 = 0,037 mola gazu.
     
    W piwowarstwie wysycenie podaje się objętościowo (ang. volume). Zapisując skrótem vol. lub v/v. Wartość 1 vol. oznacza, że w 1 litrze piwa rozpuszczony jest 1 litr gazu. Jeżeli w butelce półlitrowej zostanie ściśnięte 1,5 litra gazu, wtedy nagazowanie będzie na poziomie 1,5 / 0,5 = 3 vol. Problem z tą jednostką jest taki, że aby ją wyliczyć trzeba również znać temperaturę. Zgodnie z opisem metody tego kalkulatora, w przypadku butelek, używa się warunków normalnych. Czyli ciśnienie atmosferyczne 1 atm oraz temperatura 0°C.
     
    Butelkę z nałożonym kapslem mogę traktować jako układ zamknięty. Nic się z niej nie wydostaje, w przeciwieństwie do fermentora z rurką. Pominę również dyfuzję i założę, że nie ma w ogóle gazu w szyjce. Butelka nalana ‘pod kapsel’. W takich warunkach cały gaz będzie w piwie. Aby obliczyć objętość, w takich warunkach jak założyłem, mogę użyć okrycia Benoîta Clapeyrona, czyli równania stanu gazu doskonałego. Dwutlenek węgla nie jest gazem doskonałym, jednakże w warunkach jakie mamy, możemy go tak traktować. Wzór wygląda tak:
    pV = nRT
    szukamy objętości: V = nRT/p
     
    Objaśnienia składowych:
    p - ciśnienie [Pa], w naszym przypadku ciśnienie atmosferyczne 1 atm = 101325 Pa V - objętość [m3], jedna butelka to 0,0005 m3 n - liczba moli gazu [mol] R - stała gazowa, która wynosi: R = 8,314 J/mol*K T - temperatura bezwzględna °K (wyliczasz ją dodając do temperatury w °C wartość 273,15)  
    Powyższy wzór, wprowadza relację między ciśnieniem, ilością cząsteczek gazu, objętością oraz temperaturą. Zmieniając jeden parametr, reszta dąży do równowagi, tak aby równanie było ciągle spełnione.

     
    Objętość CO2: V = 0,037 [mol] * 8.314 [J/mol*K] * 273,15 [K] / 101325 [Pa] = 0,00083 [m3].
    Zamieniajac na litry mam łącznie 0,83 litra dwutlenku węgla w butelce półlitrowej.
     
    Mogę już policzyć wysycenie, które wynosi około 0,83 / 0,5 = 1,66 vol. Jest to dość niskie wysycenie jak na piwa belgijskie. Należałoby dodać więcej cukru na refermentację. Za to wynik jest też bardzo bliski temu, co wyliczają kalkulatory.
     
    W realnym świecie wygląda to tak, że butelka ma pojemność trochę większą niż pół litra oraz będzie trochę gazu w szyjce. Do butelki trafi również trochę powietrza. Tlen zostanie pobrany przez drożdże, część wejdzie w reakcje z piwem. Azot jest bardzo słabo rozpuszczalny i głównie będzie w szyjce. Dodatkowo część dwutlenku węgla uleci, bo prawo Henry’ego musi być zachowane, i podzieli miejsce z azotem.
     
    Powyżej chciałem pokazać skąd biorą bąbelki oraz dlaczego trzeba uwzględniać temperaturę rozlewanego piwa. Nawet w przypadku gdy zrobiłeś cold-crash, to powinieneś użyć najwyższej temperatury po fazie burzliwej fermentacji. Nikt z nas nie liczy nagazowania sposobem jaki pokazałem. W praktyce do prawidłowego wyliczenia nagazowania, surowca do refermentacji, używany jest kalkulator. Dobry kalkulator uwzględnia straty CO2 przy napełnianiu butelek, ilość miejsca w szyjce, oraz pewnie kilka innych czynników. Używam najczęściej narzędzia dostarczonego przez Brewer’s Friends. Aby dobrze trafić w metodologię tego narzędzia, nie trzeba robić nic innego jak unikanie natlenienia. To znaczy, nalewać piwo tak, aby się nie pieniło i zostawić jak najmniej powietrza w szyjce. W moim przypadku, gdzie używam rurki do rozlewu jest to około 12 ml w półlitrowej butelce, stanowi to około 2,5% objętości.
     
    Poniżej, przedstawiam przykład wyliczenia surowca do refermentacji w oparciu o powyższy kalkulator.
     

     
     
    Narzędzie podpowiada mi, że mam użyć około 80 gramów glukozy. Mogę też użyć 106 gramów suchego ekstraktu słodowego (DME ang. Dry Malt Extract). Niemal zawsze używam cukru białego/buraczanego/stołowego/kryształ, tego cukru powinienem dodać około 72 gramów. Małe odchylenia będą niezauważalne w wysyceniu. Różnice w ilości surowca podanego przez kalkulator, wynikają ze stopnia fermentowalności.
     
    Wysycenie w kegu
     
    W przypadku kegów, będę mówił o sztucznym wysyceniu z butli. Wcześniej wspomniałem o prawie Henry’ego. Mówi ono, że rozpuszczalność gazu w cieczy zależy od temperatury oraz ciśnienia. Dodatkowo rozpuszczalność przebiega na pewnym stałym poziomie dla określonej pary gaz-ciecz w określonej temperaturze i ciśnieniu. Na szczęście ktoś to już wyznaczył i policzył oraz zamknął w tabelę. Przy wysyceniu z butli najlepiej użyć gotowca. Najczęściej używam tej tabeli: https://www.kegerators.com/carbonation-table/
    Jako, że powyższa tabela jest duża, to w przykładach użyję trochę mniejszej wziętej z [1].
     
     

     
    Jak z niej korzystać? Bierzesz temperaturę, w której stoi keg, a w zasadzie temperaturę piwa. Następnie wybierasz poziom wysycenia jaki chcesz uzyskać objętościowo i sprawdzasz odpowiadające temu ciśnienie. Odczytane ciśnienie ustawiasz na reduktorze. Po kilku dniach, keg jest wysycony.
     
    Przykład. Keg stoi w kegeratorze lub w piwnicy gdzie jest 10°C. Piwo osiągnęło (lub osiągnie) taką samą temperaturę. Celem jest wysycenie na około 2 vol. To odpowiada ciśnieniu około 12 psi. Przelicznik z psi na bar wynosi 1 psi = 0,0689475729 bar. Zatem 12 psi, to około 0,82 bar. Najczęściej ustawia się nieznacznie większe ciśnienie, aby zniwelować małą utratę CO2 podczas nalewania. Docelowym ciśnieniem, będzie zatem około 0,85 bar. Podaje dwie jednostki, ponieważ reduktory, które można kupić, najczęściej mają ciśnienie podane w barach, ale są również takie ze skalą psi.
     
    W przypadku wyszynku piwa z kega w warunkach domowych, rodzi się problem jeżeli wysycasz piwo na mocno odbiegające od siebie wartości. Powiedzmy bittera na 1,8 vol. a pszenicę na 3,5 vol. Blisko dwukrotna różnica. Piwa przy tak dużych różnicach ciśnień, będą trudne w wyszynku z jednej linii. Otwierając kran, gdzie jest ustawione duże ciśnienie, będzie leciało dużo piany. Dlatego w praktyce, idzie się na kompromis i większość piw gazuje się podobnie w granicach 1,8 - 2,2 vol. Wtedy spadek ciśnienia na linii piwnej jest podobny i można ją tak policzyć, by wyszynk był przyjemny. Zamiast kompromisu, można mieć kilka kranów z różnymi długościami linii, dedykowanymi pod ciśnienie. Jednakże, na początku przygody, ze względu na wysoki koszt budowy, najczęściej zaczyna się od jednego kranu i pojedynczego reduktora.
    Zrównoważona linia to taka, w której do kranu dochodzi ciśnienie około 2 psi ~= 0,14 bar. Wtedy piwo będzie leciało w tempie około 4 półlitrowych szklanek na minutę [1]. Nie będzie się również pieniło i ubytek gazu będzie minimalny. Aby zbudować pianę użyjesz spieniacza w kranie, albo jak profesjonalista lekko obniżysz szklankę, wtedy strumień piwa wytrąci trochę CO2 i powstanie ładna czapa.
    Wszystkie elementy, przez które przetacza się piwo stanowią opór co za tym idzie, im dalej tym spadek ciśnienia większy.

     
    Posilę się tutaj rysunkiem i wzorem z [1].
     

     
    Peff = PE - PH - PLR
     
    Peff powinno wynosić około 2 psi ~= 0,14 bar. PE jest to ciśnienie ustawione na reduktorze i takie panuje w zbiorniku. PH jest to ciśnienie potrzebne, aby piwo podnieść i przepchnąć do kranu. W tym przypadku wynosi to około 2 stóp (około 0,6 metra). PLR jest to ciśnienie wymagane, by przepiąć piwo przez linię piwną.
     
    Książka [1], z którą liczyłem swoją linię podaje takie orientacyjne wartości ciśnień:
    PH - ciśnienie potrzebne by podnieść piwo na wysokość 1 metra wynosi około 3,3 psi ~= 0,23 bar . Nasze krany są najczęściej zawieszone około 0,5 metra nad beczką, zatem obniżą ciśnienie na wyjściu kranu o około 0,1 bar. PLR - ciśnienie potrzebne na przepchanie piwa przez linię. Jest zależnie od zastosowanego przewodu. W Polsce stosujemy najczęściej dwie średnice 3/8’’ oraz 3/16’’. Ciśnienie wymagane przez linię 3/8'’ wynosi 0,33 psi ~=0,023 bar, na każdy metr. W przypadku linii 3/16’’ potrzeba ~7 psi na każdy metr. Książka podaje dodatkowo rzadziej spotykaną linię 1/4'’. W tym przypadku wymagane ciśnienie to 2 psi ~= 0,14 bar na każdy metr. W barach, ze względu na długie linie i montowane antyspieniacze, wybiera się przewody 3/8'’ cala. W domowym wyszynku, lepiej wybrać te o mniejszym przekroju.  
    Najlepiej pokazać to na przykładzie. Reduktor został ustawiony tak, by trzymał ciśnienie 14 psi. Kran jest zawieszony około 0,5 metra ponad kegiem. Ile metrów przewodu potrzeba, aby z kranu leciało piwo a nie sama piana.
    Musimy zachować 2 psi, by piwo leciało odpowiednio szybko. Zatem zostaje 12 psi. Wysokość jest niewielka i tak zabierze około 1,5 psi. Pozostało 10,5 psi. To, na czym osiągniemy resztę celu to długość przewodu piwnego. Wybieram przewód 3/16’’, bo wymaga większego ciśnienia w przeliczeniu na metr. Potrzebuję 10,5 psi / 7 psi, czyli około 1,5 metra. W praktyce warto kupić przynajmniej metr więcej, sprawdzić i w razie czego dociąć. Dłuższy przewód powinien być użyty w przypadku kraniku typu picnic, który nie ma kompensatora.
     
    Kegi to dobra rzecz, zwłaszcza gdy na hobby masz mało czasu, bo przyspieszają rozlew piwa. Zdezynfekowane, mogą długo poczekać na swoją kolej, dlatego warto mieć kilka. Używam kegów typu cornelius/pepsi. Mycie oraz dezynfekcja kega, przy odrobinie wprawy zabiera godzinę, głównie przez czas działania środka myjącego. Jeżeli masz kilka kegów, to myjesz je taśmowo i równolegle, różnica między myciem jednego kega a kilku, to raptem kilkanaście minut. Co kilka wyszynków, wypada keg rozkręcić, umyć, zdezynfekować wszystkie części. Wymienić uszczelki jeżeli tego wymagają.
    Kegować możesz również, jeżeli nie masz możliwości przechowywania kega w stałej temperaturze. W takim wypadku zamiast kranu, można użyć taniej głowicy i przetaczać piwo do butelek typu PET.  Głowica pasuje na gwint butelek po wodzie gazowanej i wygląda tak: https://www.piwo.org/forums/topic/26151-rozlew-z-kega-cornelius-do-butelek-pet-carbonation-cap/.
     
    Masz już podstawy teoretyczne jak zacząć wyszynk z kega. Możesz chcesz zacząć jako praktyk? Na naszym forum @darinho napisał obszerny artykuł jak zacząć wyszynk z kegów typu Petainer, przedstawiając zalety i wady. Zainteresuj się również linkami zamieszczonymi na dole opracowania, kierują do wątków traktujących o wyszynku z kegów typu Pepsi/Cornelius. Myślę, że mój artykuł oraz @darinho stanowią dobre uzupełnienie całego procesu.
     
    Tym razem na końcu, ale nie mniej ważne. Chciałbym podziękować forumowiczom: Kantor, Oskaliber oraz Undeath za wsparcie wiedzą, poprawki i uwagi w powyższym opracowaniu. Również nie mogę zapomnieć o żonie, która jako pierwsza wprowadziła niezliczoną ilość poprawek stylistycznych.
     
    Mam nadzieję, że artykuł przypadł Ci do gustu i dowiedziałeś się czegoś nowego. Już wiesz jak wygląda proces wysycania i diabeł nie jest taki straszny. Prawo Henry’ego jest w naszym hobby obecne wszędzie. Począwszy od roli dwutlenku węgla w budowaniu profilu wody, poprzez zacieranie, napowietrzenie brzeczki, skończywszy na wyszynku. Dziękuję.
     
    Jeżeli lubisz taką formę opracowań, to możesz być również zainteresowany innymi artykułami. Znajdziesz je w tym miejscu.
     
    Jeżeli widzisz błąd proszę zgłoś go jako wiadomość prywatną, by uniknąć off-topów. Jeżeli błąd wymaga dyskusji nie wahaj się dodać komentarza.
     
     
  4. Dzięki!
    Beier otrzymał(a) reputację od DanielN w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    W temacie obniżania pH. Pozwólcie, że podsumuję za i przeciw stosowaniu popularnych kwasów mlekowego i ortofosforowego, jak i tych mniej popularnych - siarkowego i solnego.
     
    Kwasy mlekowy i fosforowy:
    + dostępność
    + cena
    +/- nie wpływają na zawartość chlorków/siarczanów
    - wpływ na smak
    - aniony tych kwasów nie występują naturalnie w wodzie
    - są to słabsze kwasy przez co potrzeba ich więcej
     
    Kwasy solny i siarkowy:
    + jony występują naturalnie w wodzie
    + potrzeba ich mniej ze względu na ich moc
    + przy dopuszczalnej ilości chlorków i siarczanów dla wody do piwa (do 250ppm) nie wpływają na smak
    +/- mają wpływ na zawartość chlorków/siarczanów (dla mnie to akurat bardziej plus bo podbijam chlorki lub siarczany bez użycia soli i jednocześnie obniżam pH)
    - dostępność - nie wszystkie sklepy chcą wysyłać (z wiadomych względów)
    - niebezpieczne bardziej niż kwas mlekowy i fosforowy (zalecane większe środki ostrożności)
    - droższe
     
    Jak widać, każde kwasy mają swoje wady i zalety. Z perspektywy piwowara domowego, szczególnie jeżeli zaczyna swoją przygodę, podejrzewam łatwiejszym rozwiązaniem jest stosowanie kwasów mlekowego lub fosforowego. Ja osobiście jednak stosuję stężone kwasy solny i siarkowy. Niedaleko mam sklep z odczynnikami chemicznymi oraz przemawia do mnie fakt, że jony powstałe z dysocjacji tych kwasów występują naturalnie w wodzie. Do tego efekt 2 w 1 czyli obniżanie pH i wpływ na zawartość chlorków/siarczanów
     
     
     
     
     
  5. Super!
    Beier otrzymał(a) reputację od sihox w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    W temacie obniżania pH. Pozwólcie, że podsumuję za i przeciw stosowaniu popularnych kwasów mlekowego i ortofosforowego, jak i tych mniej popularnych - siarkowego i solnego.
     
    Kwasy mlekowy i fosforowy:
    + dostępność
    + cena
    +/- nie wpływają na zawartość chlorków/siarczanów
    - wpływ na smak
    - aniony tych kwasów nie występują naturalnie w wodzie
    - są to słabsze kwasy przez co potrzeba ich więcej
     
    Kwasy solny i siarkowy:
    + jony występują naturalnie w wodzie
    + potrzeba ich mniej ze względu na ich moc
    + przy dopuszczalnej ilości chlorków i siarczanów dla wody do piwa (do 250ppm) nie wpływają na smak
    +/- mają wpływ na zawartość chlorków/siarczanów (dla mnie to akurat bardziej plus bo podbijam chlorki lub siarczany bez użycia soli i jednocześnie obniżam pH)
    - dostępność - nie wszystkie sklepy chcą wysyłać (z wiadomych względów)
    - niebezpieczne bardziej niż kwas mlekowy i fosforowy (zalecane większe środki ostrożności)
    - droższe
     
    Jak widać, każde kwasy mają swoje wady i zalety. Z perspektywy piwowara domowego, szczególnie jeżeli zaczyna swoją przygodę, podejrzewam łatwiejszym rozwiązaniem jest stosowanie kwasów mlekowego lub fosforowego. Ja osobiście jednak stosuję stężone kwasy solny i siarkowy. Niedaleko mam sklep z odczynnikami chemicznymi oraz przemawia do mnie fakt, że jony powstałe z dysocjacji tych kwasów występują naturalnie w wodzie. Do tego efekt 2 w 1 czyli obniżanie pH i wpływ na zawartość chlorków/siarczanów
     
     
     
     
     
  6. Dzięki!
    Beier otrzymał(a) reputację od Fenris w Wpływ tlenku wodoru na piwo, czyli o wodzie w browarze domowym, bez lania wody   
    mg/l:
    Ca 48,80
    Mg 3,70
    Na 4,25
    SO4 17,00
    Cl 5,86
    HCO3 136,00
  7. Dzięki!
    Beier otrzymał(a) reputację od jaro_78 w Butelkowanie nagazowanego piwa   
    Do rozlewu nie więcej niż 0,5 Bar... i najlepiej w żeby piwo miało około 0-1°C.
×
×
  • Dodaj nową pozycję...

Powiadomienie o plikach cookie

Umieściliśmy na Twoim urządzeniu pliki cookie, aby pomóc Ci usprawnić przeglądanie strony. Możesz dostosować ustawienia plików cookie, w przeciwnym wypadku zakładamy, że wyrażasz na to zgodę.